Problem 4.32

(a) Find the eigenvalues and eigenspinors of S_{y}.
(b) If you measured S_{y} on a particle in the general state χ (Equation 4.139), what values might you get, and what is the probability of each? Check that the probabilities add up to 1 .
Note: a and b need not be real!
(c) If you measured S_{y}^{2}, what values might you get, and with what probabilities?

Solution

Part (a)

The matrix S_{y} is in Equation 4.147 on page 168.

$$
\mathrm{S}_{y}=\frac{\hbar}{2}\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]=\left[\begin{array}{rr}
0 & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & 0
\end{array}\right]
$$

Start by finding its eigenvalues.

$$
\begin{gathered}
\operatorname{det}\left(\mathrm{S}_{y}-\lambda \mathrm{I}\right)=0 \\
\left|\begin{array}{cc}
-\lambda & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & -\lambda
\end{array}\right|=0 \\
(-\lambda)^{2}-\left(-\frac{i \hbar}{2}\right)\left(\frac{i \hbar}{2}\right)=0 \\
\lambda^{2}-\frac{\hbar^{2}}{4}=0 \\
\left(\lambda+\frac{\hbar}{2}\right)\left(\lambda-\frac{\hbar}{2}\right)=0
\end{gathered}
$$

As a result, the eigenvalues (the possible measurements of S_{y}) are

$$
\lambda_{-}=-\frac{\hbar}{2} \quad \text { and } \quad \lambda_{+}=\frac{\hbar}{2} .
$$

Now find the eigenvectors (or rather eigenspinors in this context) associated with these eigenvalues.

$$
\begin{array}{rr}
\left(\mathrm{S}_{y}-\lambda_{-} \mathrm{I}\right) \chi_{-}^{(y)}=0 & \left(\mathrm{~S}_{y}-\lambda_{+} \mathrm{I}\right) \chi_{+}^{(y)}=0 \\
{\left[\begin{array}{rr}
\frac{\hbar}{2} & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & \frac{\hbar}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} & {\left[\begin{array}{rr}
-\frac{\hbar}{2} & -\frac{i \hbar}{2} \\
\frac{i \hbar}{2} & -\frac{\hbar}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Write the system of equations implied from each matrix equation.

$$
\left.\left.\begin{array}{rr}
\left.\begin{array}{r}
\frac{\hbar}{2} x_{1}-\frac{i \hbar}{2} x_{2}=0 \\
\frac{i \hbar}{2} x_{1}+\frac{\hbar}{2} x_{2}=0
\end{array}\right\} & -\frac{\hbar}{2} x_{1}-\frac{i \hbar}{2} x_{2}=0 \\
x_{1}-i x_{2}=0 \\
i x_{1}+x_{2}=0
\end{array}\right\} \quad \begin{array}{r}
\frac{i \hbar}{2} x_{1}-\frac{\hbar}{2} x_{2}=0
\end{array}\right\}
$$

Choose x_{1} so that each eigenvector is normalized.

$$
\begin{array}{rlr}
\left|x_{1}\right|^{2}+\left|-i x_{1}\right|^{2} & =1 & \left|x_{1}\right|^{2}+\left|i x_{1}\right|^{2}
\end{array}=1
$$

Therefore, the eigenvalues and associated normalized eigenspinors are

$$
\left\{\begin{array} { r l }
{ \lambda _ { - } } & { = - \frac { \hbar } { 2 } } \\
{ \chi _ { - } ^ { (y) } } & { = \frac { 1 } { \sqrt { 2 } } [\begin{array} { r }
{ 1 } \\
{ - i }
\end{array}] }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\lambda_{+}=+\frac{\hbar}{2} \\
\chi_{+}^{(y)}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right]
\end{array}\right.\right.
$$

Part (b)

If you measure S_{y} on a particle with spin $1 / 2$ in the general state,

$$
\chi=\left[\begin{array}{l}
a \\
b
\end{array}\right],
$$

where $|a|^{2}+|b|^{2}=1$, then you can get two results: $-\hbar / 2$ and $+\hbar / 2$.

The probability of measuring $-\hbar / 2$ is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{-}^{(y)}\right\rangle$.

$$
\begin{aligned}
P\left(-\frac{\hbar}{2}\right) & =\left|c_{-}^{(y)}\right|^{2} \\
& =\left|\left\langle\chi_{-}^{(y)} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{-}^{(y) \dagger} \chi\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]^{\dagger}\left[\begin{array}{c}
a \\
b
\end{array}\right]\right|^{2} \\
& =\frac{1}{2}\left|\left[\begin{array}{ll}
1 & i
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]\right|^{2} \\
& =\frac{1}{2}|a+i b|^{2} \\
& =\frac{1}{2}(a+i b)(a+i b)^{*} \\
& =\frac{1}{2}(a+i b)\left(a^{*}-i b^{*}\right) \\
& =\frac{1}{2}\left[a a^{*}+b b^{*}-i\left(a b^{*}-b a^{*}\right)\right] \\
& =\frac{1}{2}\left(|a|^{2}+|b|^{2}\right)+\frac{a b^{*}-\left(a b^{*}\right)^{*}}{2 i} \\
& =\frac{1}{2}\left(|a|^{2}+|b|^{2}\right)+\operatorname{Im}\left(a b^{*}\right)
\end{aligned}
$$

The probability of measuring $+\hbar / 2$ is the modulus squared of the component of $|\chi\rangle$ along $\left|\chi_{+}^{(y)}\right\rangle$.

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\left|c_{+}^{(y)}\right|^{2} \\
& =\left|\left\langle\chi_{+}^{(y)} \mid \chi\right\rangle\right|^{2} \\
& =\left|\chi_{+}^{(y) \dagger} \chi\right|^{2} \\
& =\left|\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
i
\end{array}\right] \quad\left[\begin{array}{l}
a \\
b
\end{array}\right]\right|^{2}
\end{aligned}
$$

Simplify the result.

$$
\begin{aligned}
P\left(+\frac{\hbar}{2}\right) & =\frac{1}{2}\left|\left[\begin{array}{ll}
1 & -i
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]\right|^{2} \\
& =\frac{1}{2}|a-i b|^{2} \\
& =\frac{1}{2}(a-i b)(a-i b)^{*} \\
& =\frac{1}{2}(a-i b)\left(a^{*}+i b^{*}\right) \\
& =\frac{1}{2}\left[a a^{*}+b b^{*}+i\left(a b^{*}-b a^{*}\right)\right] \\
& =\frac{1}{2}\left(|a|^{2}+|b|^{2}\right)-\frac{a b^{*}-\left(a b^{*}\right)^{*}}{2 i} \\
& =\frac{1}{2}\left(|a|^{2}+|b|^{2}\right)-\operatorname{Im}\left(a b^{*}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P\left(-\frac{\hbar}{2}\right)+P\left(+\frac{\hbar}{2}\right) & =\left[\frac{1}{2}\left(|a|^{2}+|b|^{2}\right)+\operatorname{Im}\left(a b^{*}\right)\right]+\left[\frac{1}{2}\left(|a|^{2}+|b|^{2}\right)-\operatorname{Im}\left(a b^{*}\right)\right] \\
& =|a|^{2}+|b|^{2} \\
& =1
\end{aligned}
$$

Part (c)
Compute the matrix S_{y}^{2}.

$$
\mathrm{S}_{y}^{2}=\mathrm{S}_{y} \mathrm{~S}_{y}=\frac{\hbar}{2}\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right] \frac{\hbar}{2}\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]=\frac{\hbar^{2}}{4}\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]=\frac{\hbar^{2}}{4}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{\hbar^{2}}{4} & 0 \\
0 & \frac{\hbar^{2}}{4}
\end{array}\right]
$$

Compute its eigenvalues.

$$
\begin{gathered}
\operatorname{det}\left(\mathrm{S}_{y}^{2}-\lambda \mathbf{I}\right)=0 \\
\left|\begin{array}{cc}
\frac{\hbar^{2}}{4}-\lambda & 0 \\
0 & \frac{\hbar^{2}}{4}-\lambda
\end{array}\right|=0 \\
\left(\frac{\hbar^{2}}{4}-\lambda\right)^{2}=0 \\
\lambda=\frac{\hbar^{2}}{4}
\end{gathered}
$$

Therefore, $+\hbar^{2} / 4$ is the only possible value if S_{y}^{2} is measured. The probability it occurs is 1 .

